(2008•安徽)将函数y=sin(2x+π3)的图象按向量a平移后所得的图象关于点(−π12,0)中心对称,则向量α的坐标可能为( ) A.(−π12,0) B.(−π6,0) C.(π12,0) D.(π6,0)
问题描述:
(2008•安徽)将函数y=sin(2x+
)的图象按向量π 3
平移后所得的图象关于点(−a
,0)中心对称,则向量α的坐标可能为( )π 12
A. (−
,0)π 12
B. (−
,0)π 6
C. (
,0)π 12
D. (
,0) π 6
答
设平移向量
=(m,0),a
则函数按向量平移后的表达式为y=sin[2(x−m)+
]=sin(2x+π 3
−2m),π 3
因为图象关于点(−
,0)中心对称,π 12
故x=−
,代入得:sin[2(−π 12
)+π 12
−2m]=0,π 3
-2m=kπ(k∈Z),π 6
k=0得:m=
,π 12
故选C.