数列{an}的前n项的和Sn=2an-1(n∈N*),数列{bn}满足:b1=3,bn+1=an+bn(n∈N*). (1)求证:数列{an}为等比数列; (2)求数列{bn}的前n项的和Tn.

问题描述:

数列{an}的前n项的和Sn=2an-1(n∈N*),数列{bn}满足:b1=3,bn+1=an+bn(n∈N*).
(1)求证:数列{an}为等比数列;
(2)求数列{bn}的前n项的和Tn

(1)∵an+1=Sn+1-Sn=(2an+1-1)-(2an-1),
∴an+1=2an
又a1=S1=2a1-1,∴a1=1≠0,
因此数列{an}为公比是2、首项是1的等比数列;
(2)易得bn+1bn2n−1,∴bnbn−12n−2bn−1bn−22n−3,…,b2b120=1
以上各式相加得,bn+1b1=1+2+3+…+2n−1=2n-1,
bn+12n+2,∴bn2n−1+2
∴Tn=b1+b2+…+bn=2n+

1−2n
1−2
=2n+2n-1(n∈N*).