高中数学:设等差数列(An)的前n项和为Sn,已知A3=24,S11=0. 求数列(An)的通项公式和Sn的最大值.急!
问题描述:
高中数学:设等差数列(An)的前n项和为Sn,已知A3=24,S11=0. 求数列(An)的通项公式和Sn的最大值.急!
答
A3=24,S11=0.
则有a1+2d=24,11a1+11*10*d/2=0,
解得:a1=40,d=-8.
所以an=a1+(n-1)d=48-8n.
该数列前5项为正,第6项为0,以后各项为负,
所以Sn的最大值为S5=S6=120.