已知M,N是椭圆C1:x^2/a^2+y^2/b^2=1和双曲线C2:x^2/a^2-y^2/b^2=1的公共顶点,p是C2上的动点,线段op交c1于点Q(点P、Q异于点M、N)直线MP、NP、MQ、NQ的斜率分别为k1、k2、k3、k4,

问题描述:

已知M,N是椭圆C1:x^2/a^2+y^2/b^2=1和双曲线C2:x^2/a^2-y^2/b^2=1的公共顶点,p是C2上的动点,线段op交c1于点Q(点P、Q异于点M、N)直线MP、NP、MQ、NQ的斜率分别为k1、k2、k3、k4,证明:k1+k2+k3+k4为定值
已知M,N是椭圆C1:x^2/a^2+y^2/b^2=1和双曲线C2:x^2/a^2-y^2/b^2=1的公共顶点,p是C2上的动点,线段op交c1于点Q(点P、Q异于点M、N)
1、若点p的坐标为(2,1),C2的离心率为2分子根号6,求C1的方程;
2、记直线MP、NP、MQ、NQ的斜率分别为k1、k2、k3、k4,证明:k1+k2+k3+k4为定值

e2=根号6/2=c/a,即有c^2/a^2=6/4=3/2(a^2+b^2)/a^2=3/2b^2/a^2=1/2a^2=2b^2P(2,1)代入得:4/a^2-1/b^2=14/2b^2-1/b^2=1b^2=1a^2=2故C1方程是x^2/2+y^2=1.2.设P、Q两点的坐标分别为P(x1,y1),Q(x2,y2),则 由向量MP+向...