已知等差数列{an}中,a2=-20,a1+a9=-28. (Ⅰ)求数列{an}的通项公式; (Ⅱ)若数列{bn}满足an=log2bn,设Tn=b1b2…bn,且Tn=1,求n的值.
问题描述:
已知等差数列{an}中,a2=-20,a1+a9=-28.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若数列{bn}满足an=log2bn,设Tn=b1b2…bn,且Tn=1,求n的值.
答
(I)设数列{an}的公差为d,则a1+d=−202a1+8d=−28,解得a1=−22d=2.∴an=-22+2(n-1)=2n-24.(II)∵an=logbn2,∴bn=22n−24.∴Tn=b1•b2•…•bn=22(1+2+…+n)-24n=2n(n+1)-24n,令n(n+1)-24n=0...