当k>2时,为什么 在区间【-1,5】上,y=kx+3k的图像位于函数F(x)= -x2+4x+5图像的上方?
问题描述:
当k>2时,为什么 在区间【-1,5】上,y=kx+3k的图像位于函数F(x)= -x2+4x+5图像的上方?
麻烦回答详细一点到最后一步,
答
设g(x)=kx+3k-F(x)=kx+3k+x²-4x-5=x²+(k-4)x+3k-5
若在区间[-1,5]上,y=kx+3k的图像位于函数F(x)= -x²+4x+5图像的上方
则在区间[-1,5]上,g(x)恒大于0
即g(x)=x²+(k-4)x+3k-5>0
当-(k-4)/26时,
g(x)的最小值为g(-1)=1-k+4+3k-5=2k>0
∴k>6时,g(x)≥g(-1)>0
当-1≤-(k-4)/22时,在区间[-1,5]上,g(x)>0
∴在区间[-1,5]上,y=kx+3k的图像位于函数F(x)= -x²+4x+5图像的上方