若a>b>c,则1/(a-b)+1/(b-c)+1/(c-b)的正负如何判断?
问题描述:
若a>b>c,则1/(a-b)+1/(b-c)+1/(c-b)的正负如何判断?
答
因为a>b>c,所以a-c>a-b>0,所以1/(a-c)0,所以1/(b-c)>0,因此
1/(a-b)+1/(b-c)+1/(c-a) = (1/(a-b)-1/(a-c))+1/(b-c) > 0+0 = 0