已知椭圆x2/a2+y2/b2=1(a>b>0)的离心率为二分之根号二,短轴的一个端点为M(0.1),直线l:kx-1/3与椭圆相交于不同的两点A,B
问题描述:
已知椭圆x2/a2+y2/b2=1(a>b>0)的离心率为二分之根号二,短轴的一个端点为M(0.1),直线l:kx-1/3与椭圆相交于不同的两点A,B
若|AB|=4√26/9,求k值
答
b = 1,c^2 = 1/2 a^2,a^2 - b^2 = c^2 = 1/2 a^2,a^2 = 2b^2,a = 根号(2)x^2 / 2 + y^2 = 1x^2 / 2 + (kx-1/3)^2 = 1A(x1,y1),B(x2,y2)(x1-x2)^2 + (y1-y2)^2 = (4根号(26)/9)^2k = +/-1能有详细化简步骤么(1/2 + k^2) x^2 -2k/3 x - 8/9 = 0x1,x2 = (2k/3 +/- 根号(4k^2/9 + 16/9 (2k^2+1)))/(2k^2+1)y1,y2 = kx1 - 1/3, kx2 - 1/3(x1-x2)^2 + (y1-y2)^2 =( k^2+1) (4k^2 / 9 + 16/9 (2k^2+1))/(k^2+1/2)^2 = 16*26/81k^2 = 1