(2012襄阳)如图,在梯形ABCD中,AD∥BC,E为BC的中点,BC=2AD,EA=ED=2,
问题描述:
(2012襄阳)如图,在梯形ABCD中,AD∥BC,E为BC的中点,BC=2AD,EA=ED=2,
答
(1)证明:∵AD∥BC,∴∠DEC=∠EDA,∠BEA=∠EAD,又∵EA=ED,∴∠EAD=∠EDA,∴∠DEC=∠AEB,又∵EB=EC,∴△DEC≌△AEB,∴AB=CD,∴梯形ABCD是等腰梯形. (2)当AB⊥AC时,四边形AECD是菱形. 证明:∵AD∥BC,BE=EC=AD,∴四边形ABED和四边形AECD均为平行四边形. ∴AB=ED,∵AB⊥AC,∴AE=BE=EC,∴四边形AECD是菱形. 过A作AG⊥BE于点G,∵AE=BE=AB=2,∴△ABE是等边三角形,∴∠AEB=60°,∴AG= 3 ,∴S 菱形AECD =ECAG=2× 3 =2 3