已知如图,四边形ABCD中,∠A与∠B互补,∠C=90°,DE⊥AB,E为垂足.若∠EDC=60°,求∠B、∠A及∠ADE的度数.
问题描述:
已知如图,四边形ABCD中,∠A与∠B互补,∠C=90°,DE⊥AB,E为垂足.若∠EDC=60°,求∠B、∠A及∠ADE的度数.
答
∵∠A与∠B互补,即∠A+∠B=180°,
∴AD∥BC,
∴∠ACD+∠ADC=180°.
又∵DE⊥AB,
∴∠ADC=90°,
∴∠ADE=∠ADC-∠EDC=90-60=30°,
∴在直角△AED中,∠A=90-30=60°,
∴∠B=180°-∠A=180°-60°=120°.