设a=3i-j-2k,b=i+2j-k,求a与b的夹角余弦{答案是cos(a,b)=3/(2√21)}求步骤
问题描述:
设a=3i-j-2k,b=i+2j-k,求a与b的夹角余弦{答案是cos(a,b)=3/(2√21)}求步骤
答
cos(a,b)=/(|a|*|b|)其中为a和b的内积,|a|,|b|分别为a和b的模.=3*1+(-1)*2+(-2)*(-1)=3|a|=√(3^2+(-1)^2+(-2)^2)=√14|b|=√(1^2+2^2+(-1)^2)=√6所以cos(a,b)=/(|a|*|b|)=3/(√14*√6)=3/(2√21)...