利用高斯公式计算曲面积分∫∫xdydz+z^2dxdy/(x^2+y^2+z^2),其中曲面∑是由x^2+y^2=R^2及z=R,z=-R所围成
问题描述:
利用高斯公式计算曲面积分∫∫xdydz+z^2dxdy/(x^2+y^2+z^2),其中曲面∑是由x^2+y^2=R^2及z=R,z=-R所围成
∑取表面外侧,答案是Rπ^2/2
我直接利用高斯公式得原式=∫∫∫z^2+y^2-x^2+2z(x^2+y^2)/(x^2+y^2+z^2)^2dxdydz,这样下去直接积或者坐标代换了之后都很难积啊
求教这个该怎么做好啊,
答
使用高斯公式后,化简后被积函数跟积分区域的圆柱体挺难构造关系,就按投影一步一步算吧.∑被积区域可以看成3个平面围成,S1:z=R,S2:z=-R,S3:x^2+y^2=R^2.可以看出S1,S2只在xoy平面内有投影,S3只在yoz平面有投影,所以积...