已知A为n阶方阵,且满足A^2-3A-4E=0,证明:A可逆,并求A-1次方
问题描述:
已知A为n阶方阵,且满足A^2-3A-4E=0,证明:A可逆,并求A-1次方
答
A^2-3A-4E=0
A^2-3EA=4E
(A-3E)A=4E
所以|A-3E||A|=|4E|=4^n≠0
所以|A|≠0
故A可逆
因为(A-3E)A=4E
所以[(A-3E)/4]A=E
所以A^(-1)=(A-3E)/4