如图,在△ABC中,AD平分∠BAC交BC于D,BE⊥AC于E,交AD于F,求证:∠AFE=1/2(∠ABC+∠C).

问题描述:

如图,在△ABC中,AD平分∠BAC交BC于D,BE⊥AC于E,交AD于F,求证:∠AFE=

1
2
(∠ABC+∠C).

∵三角形内角和是180°,
∴∠BAC=180°-(∠ABC+∠C),
∵AD平分∠BAC交BC于D,
∴∠DCA=

1
2
∠BAC=90°-
1
2
(∠ABC+∠C),
∵BE⊥AC于E,
∴∠AFE=90°-∠FAE=90°-90°+
1
2
(∠ABC+∠C)=
1
2
(∠ABC+∠C).