一元三次方程能用韦达定理吗?

问题描述:

一元三次方程能用韦达定理吗?

一元三次方程能用韦达定理,所有的一元方程都能用.韦达定理推广的证明设X1,X2,……,xn是一元n次方程∑AiXi =0的n个解。 则有:An(x-x1)(x-x2)……(x-xn)=0 所以:An(x-x1)(x-x2)……(x-xn)=∑AiXi (在打开(x-x1)(x-x2)……(x-xn)时最好用乘法原理) 通过系数对比可得: A(n-1)=-An(∑xi) A(n-2)=An(∑xixi) … A0=[(-1) ]×An×ΠXi 所以:∑Xi=[(-1) ]×A(n-1)/A(n) ∑XiXj=[(-1) ]×A(n-2)/A(n) … ΠXi=[(-1) ]×A(0)/A(n) 其中∑是求和,Π是求积。