如图,AB是⊙O的直径,点C在BA的延长线上,直线CD与⊙O相切于点D,弦DF⊥AB于点E,线段CD=10,连接BD. (1)求证:∠CDE=2∠B;(2)若BD:AB=3:2,求⊙O的半径及DF的长.
问题描述:
如图,AB是⊙O的直径,点C在BA的延长线上,直线CD与⊙O相切于点D,弦DF⊥AB于点E,线段CD=10,连接BD.
(1)求证:∠CDE=2∠B;
(2)若BD:AB=
:2,求⊙O的半径及DF的长.
3
答
(1)证明:连接OD.
∵直线CD与⊙O相切于点D,
∴OD⊥CD,∠CDO=90°,∠CDE+∠ODE=90°.
又∵DF⊥AB,∴∠DEO=∠DEC=90°.
∴∠EOD+∠ODE=90°,
∴∠CDE=∠EOD.
又∵∠EOD=2∠B,
∴∠CDE=2∠B.
(2) 连接AD.
∵AB是⊙O的直径,
∴∠ADB=90°.
∵BD:AB=
:2,
3
∴在Rt△ADB中cosB=
=BD AB
,
3
2
∴∠B=30°.
∴∠AOD=2∠B=60°.
又∵∠CDO=90°,
∴∠C=30°.
在Rt△CDO中,CD=10,
∴OD=10tan30°=
10 3
,
3
即⊙O的半径为
10 3
.
3
在Rt△CDE中,CD=10,∠C=30°,
∴DE=CDsin30°=5.
∵DF⊥AB于点E,
∴DE=EF=
DF.1 2
∴DF=2DE=10.