如图,△ABC中,AB=AC,AD是角平分线,E为AD延长线上一点,CF//BE交AD于F,连接BF,CE求证:四边形BECF是菱形

问题描述:

如图,△ABC中,AB=AC,AD是角平分线,E为AD延长线上一点,CF//BE交AD于F,连接BF,CE求证:四边形BECF是菱形

∵AB=AC,
∴△ABC为等腰三角形,
∵AD是角BAC的平分线,
∴AD垂直于BC且AD平分BC(三线合一),
∴∠CDF=∠BDE=90°,BD=CD
又∵CF//BE,
∴∠CFD=∠BED,
∴△CDF≌△BDE,
∴DF=DE,
∴EF垂直平分于BC
∴四边形BECF是菱形