设A是秩数为r的n阶矩阵,证明有n阶矩阵B使得秩(B)=n-r,且AB=BA=0.(会证AB=0,但不会AB=BA=0)

问题描述:

设A是秩数为r的n阶矩阵,证明有n阶矩阵B使得秩(B)=n-r,且AB=BA=0.(会证AB=0,但不会AB=BA=0)