已知向量m=﹙sin﹙x-π/4﹚,1﹚向量n=﹙cos﹙x-π/4﹚,3﹚.f﹙x﹚=mn

问题描述:

已知向量m=﹙sin﹙x-π/4﹚,1﹚向量n=﹙cos﹙x-π/4﹚,3﹚.f﹙x﹚=mn
1﹚若m∥n,求f﹙x﹚
2﹚若函数的图像向右平移m﹙m>0﹚个单位长度,再向下平移3个单位后图像对应的函数g﹙x﹚是奇函数,求m的最小值.

m//n,则:[sin(x-π/4)]/cos(x-π/4)=1/3,即:tan(x-π/4)=1/3又:tan(x-π/4)=[tanx-1]/[tanx+1]=1/3,则:tanx=2f(x)=sin(x-π/4)cos(x-π/4)+3=(1/2)sin(2x-π/2)+3=-(1/2)cos2x+3tanx=2f(x)=-(1/2)...