已知α,β∈(3π4,π),sin(α+β)=−3/5,sin(β−π4)=12/13,则cos(α+π4)=_.

问题描述:

已知α,β∈(

4
,π),sin(α+β)=−
3
5
sin(β−
π
4
)=
12
13
,则cos(α+
π
4
)
=______.

已知α,β∈(

4
,π),sin(α+β)=−
3
5

sin(β−
π
4
)=
12
13
α+β∈(
2
,2π)
β−
π
4
∈(
π
2
4
)

cos(α+β)=
4
5
cos(β−
π
4
)=−
5
13

cos(α+
π
4
)
=cos[(α+β)−(β−
π
4
)]

=cos(α+β)cos(β−
π
4
)+sin(α+β)sin(β−
π
4
)

=
4
5
•(−
5
13
)+(−
3
5
)•
12
13
=−
56
65

故答案为:-
56
65