m为任意实数,判断下列方程根的情况:1.x²-3x+2-m²=0
问题描述:
m为任意实数,判断下列方程根的情况:1.x²-3x+2-m²=0
2.x²-3x+m²+3=0 3.x²-(m+1)x+m=0.4.x²+(m+2)x-(3m+20)=0
答
1.x²-3x+2-m²=0
∵Δ=b²-4ac
=(-3) ²-4×1×(2-m²)
=9-8+4m²
=4m²+1>1>0
∴方程有两个不相等的实数根.
2.x²-3x+m²+3=0
∵Δ=b²-4ac
=(-3) ²-4×1×(m²+3)
=9-4m²-12
=-4m²-3≤-3<0
∴方程没有实数根.
3.x²-(m+1)x+m=0.
∵Δ=b²-4ac
=[-(m+1) ]²-4×1×m
=m²+2m+1-4m
=m²-2m+1
=(m-1) ²≥0
∴方程有实数根.
4.x²+(m+2)x-(3m+20)=0
∵Δ=b²-4ac
=(m+2) ²-4×1×[-(3m+20)]
=m²+4m+4+12m+80
=m²+16m+84
=( m²+16m+64)+20
=(m+8) ²+20≥20>0
∴方程有两个不相等的实数根.