正四棱柱ABCD-A1B2C3D4中,AA1=2AB=4,点E在CC1上且C1E=3EC ⑴证明A1C⊥平面BED,⑵求二面角A1-DE-B的大小

问题描述:

正四棱柱ABCD-A1B2C3D4中,AA1=2AB=4,点E在CC1上且C1E=3EC ⑴证明A1C⊥平面BED,⑵求二面角A1-DE-B的大小

证明:连AC,BD交于点M,ME为平面ACC1A1与平面BDE的交线,设A1C过平面DEB交于点F则F必在交线ME上
(平面ACD与直线BD)
∵AC⊥BD,AA1⊥平面ABCD=>AA1⊥BD
AA1∩AC=A
∴BD⊥平面AA1C ∴BD⊥A1C
(平面ACC1A1内,RT△MCE与RT△AA1C)
CE:AC=1:2√2=CM:AA1=√2:4
所以△MCE∽△AA1C=>∠CME=∠AA1C ∠MEC=∠CME
所以∠CFM=∠CAA1=90°即A1C⊥ME
BD∩ME=M所以A1C⊥平面BDE
(2)
A1C⊥平面BDE 得A1C⊥DE
过F作DE垂线交DE与P则FP⊥DEA1F⊥DEA1F∩FP=F得DE垂直平面A1FP
所以DE⊥A1P
那么∠FPA1即为所求二面角
(求A1F长度)
在平面ACC1A1内
△ CFE∽△CC1A1 A1C=√((2√2)²+4²)=2√6
设CF长为x
则x:4=1:2√6解得x=√6/3
所以A1F=A1C-CF=2√6-√6/3=5√6/3
(求PF长度)
△ BDE为等腰三角形 M为中点所以∠EMD=∠FPE=90°
∠FEP=∠PEF 所以△PEF∽△DME
PF:DM=FE:DEDE=√(1+2² )=√5
FE在△CEF中长为√(1²-(√6/3)²)=√3/3
DM=√2 解得PF=√30/15
(求A1P长度)
A1P为△A1DE的高
DE=√5 DA1=√(2²+4²)=2√5A1E=√(C1E²+A1C²)=√((2√2)²+3²)=√17
由余弦定理
Cos∠EDA1=((√5 )²+(2√5)²-(√17)²)/(2×√5×2√5)=2/5
所以sin∠EDA1=√(1-(2/5)²)=√21/5
S△A1DE=1/2×A1D×DE×sin∠EDA1=1/2×DE×A1P
解得A1P=2√105/5
(求角FPA1)
△A1PF中 cos∠FPA1=((√30/15)²+(2√105/5)²-(5√6/3)²)/(2×√30/15×2√105/5)=√14/42
所以所求二面角为arccos√14/42