如图,在三角形ABC中,角ABC和角ACB的外角平分线相交于点P.(1)若角ABC=30度,角ACB=70度,求角BPC的度

问题描述:

如图,在三角形ABC中,角ABC和角ACB的外角平分线相交于点P.(1)若角ABC=30度,角ACB=70度,求角BPC的度

数.(2)若角ABC=α,角BPC=β,求角ACB的度数.

(1)∵∠B和∠C的外角平分线相交于点P,
∴∠PBC=1/2∠EBC,∠PCB=1/2∠FCB.
∵∠A=80°,∴∠ABC+∠ACB= 100°.
又∵∠ABC +∠ACB+∠EBC+∠FCB=360°,
∴∠EBC+∠FCB= 360°.
又∵∠PBC+∠PCB+∠BPC= 180°.
∴∠BPC = 180° - (∠PBC +∠PCB ) = 180°-1/2 (∠EBC+∠FCB)=50°为什么我算出来等于55度?第二题呢?∠P=90-1/2∠A∠ACB=2b-a