求曲线y=cosx在x=π/4时的切线方程
问题描述:
求曲线y=cosx在x=π/4时的切线方程
答
答:
y=cosx
y'(x)=-sinx
x=π/4时:
y=cos(π/4)=√2/2
y'(x)=-sin(π/4)=-√2/2
切线为:
y-√2/2=(-√2/2)(x-π/4)
整理得:
√2x+2y-√2/2-√2π/4=0