(1+1/1x3)x(1+1/2x4)x(1+1/3x5)x~x(1+1/97X99)X(1+1/98X100)=?

问题描述:

(1+1/1x3)x(1+1/2x4)x(1+1/3x5)x~x(1+1/97X99)X(1+1/98X100)=?

﹙2×2/1﹚×﹙2×3/2﹚.×﹙2×99/98﹚
=99×2∧98算理总结:每个括号内=1+﹙n+2﹚/n =2×﹙n+1﹚/n原式=2∧98×﹙2×3×4.....×99﹚/﹙1×2×3×....×98﹚=99×2∧98