如图,已知P是正方形ABCD边BC上一点,BP=3PC,Q是CD的中点, (1)求证:△ADQ∽△QCP; (2)若AB=10,连接BD交AP于点M,交AQ于点N,求BM,QN的长.
问题描述:
如图,已知P是正方形ABCD边BC上一点,BP=3PC,Q是CD的中点,
(1)求证:△ADQ∽△QCP;
(2)若AB=10,连接BD交AP于点M,交AQ于点N,求BM,QN的长.
答
证明:(1)∵正方形ABCD中,BP=3PC,Q是CD的中点∴PC=14-BC,CQ=DQ=12CD,且BC=CD=AD∴PC:DQ=CQ:AD=1:2∵∠PCQ=∠ADQ=90°∴△PCQ∽△ADQ(2)∵△BMP∽△AMD∴BM:DM=BP:AD=3:4∵AB=10,∴BD=102,∴BM=3072...