已知数列an是公差不为零的等差数列,其前n项和为Sn,若S1+S3=7/2,a4,a8,a16依次等比数列,求证Sn=ana(n+1)

问题描述:

已知数列an是公差不为零的等差数列,其前n项和为Sn,若S1+S3=7/2,a4,a8,a16依次等比数列,求证Sn=ana(n+1)

设首项为a1,公差为d,则有:S1+S3=a1+a1+a2+a3=4a1+3d=7/2∵a4,a8,a16依次等比数列∴a8²=a4a16即(a1+7d)²=(a1+3d)(a1+15d)化简得a1d-d²=0∵公差d≠0∴a1-d=0即a1=d,代入4a1+3d=7/2解得a1=d=1/2...