设关于x的方程ax2+(a+2)x+9a=0,有两个不相等的实数根x1、x2,且x1<1<x2,那么实数a的取值范围是(  ) A.a<−211 B.27<a<25 C.a>25 D.−211<a<0

问题描述:

设关于x的方程ax2+(a+2)x+9a=0,有两个不相等的实数根x1、x2,且x1<1<x2,那么实数a的取值范围是(  )
A. a<−

2
11

B.
2
7
<a<
2
5

C. a>
2
5

D.
2
11
<a<0

∵方程有两个不相等的实数根,则△>0,∴(a+2)2-4a×9a=-35a2+4a+4>0,解得-27<a<25,∵x1+x2=-a+2a,x1x2=9,又∵x1<1<x2,∴x1-1<0,x2-1>0,那么(x1-1)(x2-1)<0,∴x1x2-(x1+x2)+1<0,即9+a+2a...