若cos(派/4+x)=3/5,17派/12

问题描述:

若cos(派/4+x)=3/5,17派/12

π/4+x的范围是5π/3根据cos(π/4+x)=3/5
得出sin(π/4+x)=-4/5

sinx+cosx=√2sin(π/4+x)=-4√2/5

(sinx+cosx)^2=32/25 所以2sinxcosx=(sinx+cosx)^2-1=7/25

cosx-sinx=√2cos(π/4+x)=3√2/5

(sin2x+2sin^2x)/(1-tgx)
=( 2sinxcosx+2sin^2x)/(1-sinx/cosx)
=2sinx(cosx+sinx)/ (1-sinx/cosx)
=2sinxcosx(cosx+sinx)/(cosx-sinx)
=-28/75

17π/12<x<7π/4,得5π/3<x+π/4<2π cos(x-π/4)=cos[(x+π/4)-π/2]=sin(x+π/4)=-√[1-cos²(x+π/4)]=-√[1-(3/5)²]=-4/5 sin(2x)=-cos(2x+π/2)=-cos[2(x+π/4)]=1-2cos²(x+π/4)=1-2•...