已知函数f(x)=sin^2x+2sinxcosx+3cos^2x+m(x属于R)的最大值为根号2-1
问题描述:
已知函数f(x)=sin^2x+2sinxcosx+3cos^2x+m(x属于R)的最大值为根号2-1
求m的值
求f(x)的周期和单调增区间
答
f(x)=1/2*(1-cos2x)+sin2x+3/2*(1+cos2x)+m=2+cos2x+sin2x+m=2+根号2*cos(2x-π/4)+m
因为最大值为根号2-1,所以2+m=-1,m=-3
周期T=2π/2=π,单调増区间:-π+2kπ