f(x)=根号下3cos^2(x+派/2)+1/2(sinx-cosx)^2,在[0.派/2]上的最大值为多少
问题描述:
f(x)=根号下3cos^2(x+派/2)+1/2(sinx-cosx)^2,在[0.派/2]上的最大值为多少
答
f(x)=√3cos^2(x+π/2)+(1/2)(sinx-cosx)^2=(√3/2)[1+cos(2x+π)]+cos^2(x+π/4)=(√3/2)(1-cos2x)+(1/2)[1+cos(2x+π/2)]=(√3+1)/2-cos2x-sin2x=(√3+1)/2-√2sin(π/4+2x)fmax(x)=(√3+1)/2+√2