解方程组:y2=x3-3x2+2x;x2=y3-3y2+2y
问题描述:
解方程组:y2=x3-3x2+2x;x2=y3-3y2+2y
2为平方
答
y^2=x^3-3x^2+2x
x^2=y^3-3y^2+2y
两式相减得:y^2-x^2=(x^3-y^3)-3(x^2-y^2)+2(x-y)
(x-y)(x^2+xy+y^2-2x-2y+2)=0
所以x-y=0,再代入1)式得:x^3-2x^2+2x=0,即x(x^2-2x+2)=0,得:x=0,故y=0,即(0,0)为一组解
或x^2+xy+y^2-2x-2y+2=0 ,化为x^2+x(y-2)+y^2-2y+2=0
delta=(y-2)^2-4(y^2-2y+2)=y^2-4y+4-4y^2+8y-8=-3y^2+4y-4=-(3y^2-4y+4)不用考虑x^2+xy+y^2-2x-2y+2=0的情况吗我就是卡在这了。。考虑了呀,将其写成关于x的函数,得到判别式小于0,因此无实根