高中数学题 抛物线已知抛物线方程y^2=8x,点P(2,4),A(x1,y1),B(x2,y2)是抛物线上3点.若直线PA与PB倾斜角互补,求线段AB中点轨迹方程.要过程,若直线PA与PB倾斜角互补说明什么?重点还是上面怎么解?

问题描述:

高中数学题 抛物线
已知抛物线方程y^2=8x,点P(2,4),A(x1,y1),B(x2,y2)是抛物线上3点.若直线PA与PB倾斜角互补,求线段AB中点轨迹方程.
要过程,若直线PA与PB倾斜角互补说明什么?
重点还是上面怎么解?

互补说明两条直线的斜率是一正一负,且绝对值相等
最终的方程应该是:16x+2y-65

设 A(x1,y1),B(x2,y2)
则:y1^2=8x1,y2^2=8x2
y1^2-y2^2=8(x1-x2)
AB斜率=(y1-y2)/(x1-x2)=8/(y1+y2)=8/(-1*2)=-4
所以,AB方程为:y=-4(x-1)-1
即:4x+y-3=0

互补说明两个倾斜角相加等于180°(两直线与x轴的成角),也就是说两个倾斜锐角相等,所以两条直线的斜率的绝对值相等.设中点为(x0,y0),则y0=(y1+y2)/2,x0=(x1+x2)/2.y1²=8x1,y2²=8x2;所以x1=1/8y1&sup...

根据A(x1,y1),B(x2,y2)是抛物线上的点,代入得到两个方程,
根据倾斜角互补,即得两直线斜率互为相反数,又得到关于x1,x2,y1,y2的关系式。
最后求出AB的中点,即((x1+x2)/2 ,(y1+y2)/2 )所满足的关系式即可。
具体自己做做吧!