如图,在Rt△ABC中,∠B=90°,AB=BE=EF=FC.求证:△AEF∽△CEA.
问题描述:
如图,在Rt△ABC中,∠B=90°,AB=BE=EF=FC.求证:△AEF∽△CEA.
答
证明:设AB=BE=EF=FC=a,
∵∠B=90°,
∴在直角三角形ABE中,由勾股定理得AE=
a.
2
∵
=AE EF
=
a
2
a
,
2
=EC AE
=2a
a
2
,
2
∴
=AE EF
且∠AEF=∠CEA.EC AE
∴△AEF∽△CEA.