设x>0,y>0,z>0,求证:x2+xy+y2+y2+yz+z2>x+y+z.
问题描述:
设x>0,y>0,z>0,求证:
+
x2+xy+y2
>x+y+z.
y2+yz+z2
答
证明:∵x>0,y>0,z>0,
∴
=
x2+xy+y2
>x+
(x+
)2+y 2
3y2
4
①y 2
=
y2+yz+z2
>z+
(z+
)2+y 2
y2
3 4
②y 2
①+②可得:
+
x2+xy+y2
>x+y+z.
y2+yz+z2