1、已知圆C:(x-3)^2+(y-4)^2=1,点A(0,-1),B(0,1),设P是圆C上的动点,令d=PA^2+PB^2,求d的最大值和最小值
1、已知圆C:(x-3)^2+(y-4)^2=1,点A(0,-1),B(0,1),设P是圆C上的动点,令d=PA^2+PB^2,求d的最大值和最小值
2、已知一曲线是与两个定点O(0,0),A(a,0)(a≠0)距离之比为k的点的轨迹,求此曲线的方程,并判断曲线的形状
1.已知圆C:(x-3)^2+(y-4)^2=1,点
A(0,-1),B(0,1),设P是圆C上的动点,令d=PA^2+PB^2,求d的最大值和最小值
设P(3+cosa,4+sina),
d=(3+cosa)^2+(5+sina)^2
+(3+cosa)^2+(3+sina)^2
=54+12cosa+16sina
=54+20sin(a+b),
其中b=arctan(3/4),
∴d的最大值=74,最小值=34.
2.令该曲线上的任一点为(x,y),则
根号(x^2+y^2)/根号[(x-a)^2+y^2]=k
则(x^2+y^2)/[(x-a)^2+y^2]=k^2
整理为:
(1-k^2)*x^2+(1-k^2)*y^2+2*k^2*x-a^2*k^2=0
分为以下情形:
(1)当k=0时,曲线为一个点(0,0)
(2)当k=1时,曲线方程为x=1/2*a^2,曲线为一平行于y轴的直线x=1/2a^2
(3)当1>k>0时,曲线方程为[x-k^2/(1-k^2)]^2+y^2=a^2+[k^2/(1-k^2)]^2,该曲线为一个圆;
(4)当k>1时,曲线方程为[x-k^2/(1-k^2)]^2+y^2=[k^2/(1-k^2)]^2-a^2
分为以下情形:
(i)当k^2/(1-k^2)]^2-a^2=0时,曲线为一个点(k^2/(1-k^2),0)
(ii)当k^2/(1-k^2)]^2-a^20时,曲线为一个圆.