已知直线l通过抛物线x平方=4y的焦点F,且与抛物线交于A、B两点,分别过A、B两点的抛物线的两条切线相交于点M,则角AMB的大小是

问题描述:

已知直线l通过抛物线x平方=4y的焦点F,且与抛物线交于A、B两点,分别过A、B两点的抛物线的两条切线相交于点M,则角AMB的大小是

x²=4y,准线y=-1设A(x1,x1²/4),B(x2,x2²/4),AB中点为C,作AD⊥准线于D,BE⊥准线于E直线L:y-1=kx,即y=kx+1联立直线抛物线得:x²-4kx-4=0 ∴x1x2=-4y’=x/2 (求导)∴K(AM)=x1/2 (再把A点代入,得直...