如图,点I是△ABC的内心,AI的延长线交边BC于点D,交△ABC外接圆于点E. (1)求证:IE=BE; (2)若IE=4,AE=8,求DE的长.
问题描述:
如图,点I是△ABC的内心,AI的延长线交边BC于点D,交△ABC外接圆于点E.
(1)求证:IE=BE;
(2)若IE=4,AE=8,求DE的长.
答
(1)证明:连接IB.
∵点I是△ABC的内心,
∴∠BAD=∠CAD,∠ABI=∠IBD.
又∵∠BIE=∠BAD+∠ABI=∠CAD+∠IBD=∠IBD+∠DBE=∠IBE,
∴BE=IE.
(2)在△BED和△AEB中,
∠EBD=∠CAD=∠BAD,∠BED=∠AEB.
∴△BED∽△AEB,
∴
=BE AE
,DE BE
∵IE=4,AE=8,
∴BE=4,
即DE=
=2.BE2 AE