利用拉格郎日中值定理或罗尔定理证明 即微分中值定理
问题描述:
利用拉格郎日中值定理或罗尔定理证明 即微分中值定理
设a>b>0,n>1,证明 n•b^n-1•(a-b)
数学人气:371 ℃时间:2020-05-24 10:32:54
优质解答
设f(x)=x^n,则f'(x)=nx^(n-1),
对f(x)在区间[b,a]上应用拉格朗日中值定理得,a^n-b^n=n•c^(n-1)•(a-b),其中a>c>b>0,
故n•b^(n-1)•(a-b)
对f(x)在区间[b,a]上应用拉格朗日中值定理得,a^n-b^n=n•c^(n-1)•(a-b),其中a>c>b>0,
故n•b^(n-1)•(a-b)
我来回答
类似推荐
答
设f(x)=x^n,则f'(x)=nx^(n-1),
对f(x)在区间[b,a]上应用拉格朗日中值定理得,a^n-b^n=n•c^(n-1)•(a-b),其中a>c>b>0,
故n•b^(n-1)•(a-b)