已知a、b、c为不等于零的实数,且a+b+c=0,求a(1/b+1/c)+b(1/c+1/a)+c(1/a+1/b)的值

问题描述:

已知a、b、c为不等于零的实数,且a+b+c=0,求a(1/b+1/c)+b(1/c+1/a)+c(1/a+1/b)的值

因为a+b+c=0 所以 a=-b-c a(1/b+1/c)+b(1/c+1/a)+c(1/a+1/b)=a/b+a/c+b/c+b/a+c/a+c/b=(b+c)a+(a+c)/b+(a+b)/c 把 a=-b-c带...