f(x)在(a,b)内连续且可导 ,且f(a)=f(b)=0,证明在区间(a,b)至少存在一点r,使得f'(r)=f(r).
问题描述:
f(x)在(a,b)内连续且可导 ,且f(a)=f(b)=0,证明在区间(a,b)至少存在一点r,使得f'(r)=f(r).
答
令g(x)=f(x)e^-x;则连续且可导且g(a)=g(b)=0;故存在r使得:g'(r)=0;即[f'(r)e^-r]-f(r)e^-r=0;从而f'(r)=f(r)