已知圆C':(x-1)^2+y^2=a过原点,且与圆C关于直线y=-x对称,求圆C的方程,求圆C与圆C'相交弦的长度

问题描述:

已知圆C':(x-1)^2+y^2=a过原点,且与圆C关于直线y=-x对称,求圆C的方程,求圆C与圆C'相交弦的长度

过原点得,a=1,圆C'为圆点在(1,0)半径为1的圆,
圆C与圆C'关于直线y=-x对称,
即圆点关于直线y=-x对称,圆C的圆点为(0,-1),
圆C的方程为x²+(y+1)²=1,
显然两圆相交点过直线y=-x,为(0,0)(1,-1)
两点的距离即为相交弦的长度为根号2.