2.已知tan a,tan(-b)是方程x2-6x-5=0的两个实数根,求证 sin(a-b)=cos(a-b)
问题描述:
2.已知tan a,tan(-b)是方程x2-6x-5=0的两个实数根,求证 sin(a-b)=cos(a-b)
想知道解题全过程
答
tan a,tan(-b)是方程x2-6x-5=0的两个实数根
tana+tan(-b)=6
tana*tan(-b)=-5
tan(a-b)=[tana+tan(-b)]/[1-tana*tan(-b)]
=1=sin(a-b)/cos(a-b)