如图,在直角梯形ABCD中,AD∥BC,∠B=90°,E是AB的中点,且CE⊥DE. (1)请你判断△ADE与△BEC是否相似,并说明理由; (2)若AD=1,BC=2,求AB的长.
问题描述:
如图,在直角梯形ABCD中,AD∥BC,∠B=90°,E是AB的中点,且CE⊥DE.
(1)请你判断△ADE与△BEC是否相似,并说明理由;
(2)若AD=1,BC=2,求AB的长.
答
(1)△ADE∽△BEC.理由如下:∵AD∥BC,∠B=90°,∴∠A=90°.又∵∠DEC=90°,∴∠AED+∠BEC=∠AED+∠ADE.∴∠BEC=∠ADE.∴△ADE∽△BEC.(2)∵△ADE∽△BEC,∴AD:BE=AE:BC.∵AD=1,BC=2,E是AB的中点,...