已知等差数列{An}中Sn为前n项和,且A2=6,A7=-4,求A1和S10.
问题描述:
已知等差数列{An}中Sn为前n项和,且A2=6,A7=-4,求A1和S10.
答
等差a=(A7-A2) / 5 = -2;
A1=A2-a=8;
S10总该会了吧
答
由a2=6 a7=-4 求得d=(a2-a7)/(2-7)=(6-(-4))/(2-7)=-2 则a1=a2-d=8 所以S10=a1*n+n(n-1)d/2=8*10+10*9*(-2)/2=-10
所以 a1=8 S10=-10
答
A7-A2= A1+6d - (A1+d)= 5d = -4-6=-10
所以 d=-2
A2=6=A1+d A1=8
所以 A10= A1+9d=8+9* (-2)=-10
S10= 10*[8+ (-10)]/2=-10
答
d=(a7-a2)/5=-2。所以a1=a2-d=8。s10=(a1+a1+9d)*10/2=-10
答
A2=6,A7=-4,
A7-A2=5d=-4-6=-10
d=-2
an=a1+d(n-1)
6=A1-2*1
A1=8
A10=8-2*(10-1)=-10
S10=(8-10)*10/2=-10
答
An=A1+(n-1)d
Sn=[n(A1+An)]/2; Sn=nA1+[n(n-1)d]/2
A2=a1+d=6 -4=a1+6d 解得: a1=8 d=-2
S10=10*8-10*9=-10