方程1/(x^2+1)+(x^2+1)/x^2=10/(3x)的实数根
问题描述:
方程1/(x^2+1)+(x^2+1)/x^2=10/(3x)的实数根
答
貌似不对吧
答
x不等于0
方程两边都乘以x
x/(x^2+1)+(x^2+1)/x=10/3
设x/(x^2+1)=y
方程变为
y+1/y=10/3
3y^2-10y+3=0
y1=3,y2=1/3
1)x/(x^2+1)=3时,无实数解
2)x/(x^2+1)=1/3时,
x1=(3+根号5)/2,x2=(3-根号5)/2,