等差数列(an)是递增数列,前n项和为Sn,且a1,a3,a9,成等比数列,S5=a5²,求数列(an)的通项
问题描述:
等差数列(an)是递增数列,前n项和为Sn,且a1,a3,a9,成等比数列,S5=a5²,求数列(an)的通项
答
{an}是递增数列,公差d>0
(a1+2d):a1 =(a1+8d):(a1+2d)
S5=5a1+10d =(a1+4d)^2
a1 = d = 3/5
an =3/5 n
答
依题意有:(a1+2d)^2=a1(a1+8d)5a1+10d=(a1+4d)^2即:d^2-a1d=0a1^2+16d^2+8a1d-5a1-10d=0由于(an)是递增数列所以,d>0.所以:a1=d.代入下面的式子得:d(5d-3)=0所以:d=0.6,则a1=0.6所以:an=0.6+0.6(n-1)=0.6n....