如图所示,有一块面积为1的正方形纸片ABCD,M、N分别为AD、BC的边上中点,将C点折至MN上,落在P点的位置,折痕为BQ,连接PQ. (1)求MP; (2)求证:以PQ为边长的正方形的面积等于1/3.

问题描述:

如图所示,有一块面积为1的正方形纸片ABCD,M、N分别为AD、BC的边上中点,将C点折至MN上,落在P点的位置,折痕为BQ,连接PQ.

(1)求MP;
(2)求证:以PQ为边长的正方形的面积等于

1
3

(1)连接BP、PC,由折法知点P是点C关于折痕BQ的对称点.∴BQ垂直平分PC,BC=BP.又∵M、N分别为AD、BC边上的中点,且ABCD是正方形,∴BP=PC.∴BC=BP=PC.∴△PBC是等边三角形.∵PN⊥BC于N,BN=NC=12BC=12,∠BPN=...