已知数列{an}的前n项和公式为sn=2n^2-3n-1,则通项公式an=?
问题描述:
已知数列{an}的前n项和公式为sn=2n^2-3n-1,则通项公式an=?
答
sn=2n^2-3n-1
s(n+1)=2(n+1)^2-3(n+1)-1
=2(n^2+1+2n)-3n-4
=2n^2+2+4n-3n-4
=2n^2+n-2
s(n-1)=2(n-1)^2-3(n-1)-1
=2(n^2+1-2n)-3n+2
=2n^2+2-4n-3n+2
=2n^2-7n+4
an=sn-s(n-1)=4n-5
a(n+1)=s(n+1)-sn=4n-1=4(n+1)-5
所以通向公式an=4n-5