求微分方程y"-y'-2y=4e∧2x的通解
问题描述:
求微分方程y"-y'-2y=4e∧2x的通解
答
1. 齐次通解Y
特征方程r²-r-2=0
(r+1)(r-2)=0
r1=-1,r2=2
Y=C1e^(-x)+C2e^2x
2. 求出1个特解y*
因为λ=2,是一重根
所以
设特解形式为y*=axe^2x
代入解出a即可,自己做
3.通解
y=Y+y*